Az Apple Anthropic-ra támaszkodva kíván saját „Vibe-Coding” platformot létrehozni

Az Apple számos nehézséggel nézett szembe az utóbbi időben saját mesterséges intelligencia megoldásainak kifejlesztése során, ezért talán nem meglepő, hogy a továbbiakban inkább külső AI-szakértelemre támaszkodna a további fejlesztések érdekében. Most úgy döntöttek, hogy az Anthropic-al egyesítik erőiket egy forradalmi „vibe-coding” szoftverplatform létrehozására, amely a generatív mesterséges intelligenciát használja fel a programozók kódjának írására, szerkesztésére és tesztelésére - derül ki a legfrissebb jelentésekből.

A hírek szerint a Claude Sonnet modellt integrálják majd az Xcode-ba, az Apple elsődleges szoftverfejlesztő platformjának frissített változatába. Ez a váratlan partnerség eltérést jelent az Apple hagyományos megközelítésétől, amely szerint az alapvető technológiákat házon belül fejlesztik. A Bloomberg május 2-án, arról számolt be, hogy bár a technológiai óriáscég ezt a szoftvert házon belül kívánja bevezetni, még nem döntött arról, hogy a platformot elérhetővé teszi-e a nyilvánosság számára is.

Az együttműködésre azt követően kerül sor, hogy az Apple korábbi kísérletei a saját AI kódoló asszisztens, a Swift Assist kifejlesztésére olyan kihívásokkal szembesültek, mint a hallucinációk és a lassú teljesítmény, amelyek késleltették a nyilvános megjelenést. A Swift Assist jelenleg olyan harmadik féltől származó eszközökkel működik együtt, mint a GitHub Copilot és a ChatGPT, amelyek mindegyike integrálásra került az Xcode-ba, hogy további AI-alapú támogatást nyújtson a fejlesztőknek.

A „vibe-coding” kifejezést Andrej Karpathy, az OpenAI társalapítója és a Tesla korábbi mesterséges intelligenciáért felelős vezetője vezette be 2025 februárjában. A mesterséges intelligenciától függő programozási paradigmára utal, amelyben a programozók természetes nyelven írnak le egy problémát, ami egy nagy, kódolásra hangolt nyelvi modell segítségével hagyományos programkódra kerül lefordításra. A programozó szerepe a kézi kódolásról az AI által generált forráskód irányítására, tesztelésére és finomítására változik.

A vibe kódolás egyik fő szempontja, hogy a felhasználók gyakran úgy fogadják el a kódot, hogy nem értik meg teljesen. Ahogy Simon Willison mesterséges intelligencia kutató megjegyezte: „Ha egy LLM írta a kód minden sorát, de Ön átnézte, tesztelte és megértette az egészet, az szerintem nem vibe coding, hanem egy LLM gépelési asszisztensként való használata„.

Karpathy a saját megközelítését beszélgetésként írta le, hangparancsokat használ, miközben az AI generálja a tényleges kódot, és elismerte, hogy bár a technikának vannak korlátai - különösen a hibák kijavításában -, „nem is olyan rossz hétvégi, eldobható projektekhez” és azt „elég szórakoztatónak” találta.

A partnerség a tervek szerint az Anthropic Claude 3.5 Sonnet modelljét használja majd, amely a fejlesztői közösség körében jelentős népszerűségre tett szert a kódoló alkalmazásokban. A modell kiváló teljesítményt és sokoldalúságot nyújt. Kétszer olyan gyorsan működik, mint elődje, miközben magas szintű kognitív teljesítményt nyújt, mivel kifejezetten a szoftverfejlesztési feladatokra optimalizálták, a kódmigrációktól és -javításoktól kezdve a fordításokig, erős teljesítményt mutat mind a tervezés, mind az összetett kódolási kihívások megoldása során. A modell 200 000 token hosszúságú kontextus ablakot használ, ami átfogó kódelemzést és generálást tesz lehetővé.

A fejlesztők számára ez a partnerség jelentősen átalakíthatja a munkafolyamatok gyakorlatát. A vibe kódolási paradigma azt ígéri, hogy még az amatőr programozók is képesek lesznek szoftvereket készíteni a szoftverfejlesztéshez hagyományosan szükséges széles körű képzés és készségek nélkül. Azt azonban érdemes figyelembe venni, hogy komplex szoftverek megalkotásánál, az elvárás elsősorban az, hogy ilyen módon csupán a koncepciókat hozzák létre, és ha a koncepció működőképesnek bizonyul, akkor azt a hagyományos módon újraprogramozzák mivel a vibe coding nem hoz létre karbantartható kódot. Ugyanakkor a Claude Sonnethez hasonló fejlett mesterséges intelligencia-modellek felhasználásával a fejlesztők kevesebb időt tölthetnek kódok írásával, és több időt fordíthatnak a magasabb szintű problémákra és kreatív megoldásokra. 

Osszd meg ezt a cikket
GitHub-integrációval erősít a Gemini Advanced
A mesterséges intelligencia alapú fejlesztői eszközök terén nincs hiány újabb és újabb fejlesztésekben. A Google ezzel kapcsolatban most bejelentette, hogy közvetlen GitHub-integrációval bővíti Gemini Advanced nevű prémium AI-asszisztensét. A lépés nem csupán válasz a rivális OpenAI hasonló fejlesztéseire, hanem egyben komoly előrelépés is a fejlesztői munkafolyamatok hatékonyságának növelésében.
Súlyos fenyegetést jelentenek a hamis AI videó generáló platformok
Kiberbiztonsági kutatók egy kifinomult új rosszindulatú támadási módszert fedeztek fel, amely a mesterséges intelligencia eszközök felhasználóit veszi célba. A Noodlophile Stealer névre keresztelt, korábban nem dokumentált rosszindulatú szoftvereket hamis AI-videógeneráló platformokon keresztül terjesztik, amelyeket Facebook-csoportokon és más közösségi média platformokon keresztül népszerűsítenek. A támadás kihasználja az AI-alapú tartalomkészítő eszközök iránti növekvő lelkesedést, és fejlett videoszerkesztési képességek ígéretével csalogatja az áldozatokat, hogy aztán rosszindulatú szoftvereket telepítsen. A támadás többlépcsős hiszen a social engineeringet összetett technikai megoldásokkal kombinálja, hogy végül egy trójai programon keresztül érzékeny információkat, köztük a böngésző hitelesítő adatokat és kriptopénz tárca adatokat lopjanak el.
A JetBrains Mellum nyílt forráskódúvá vált
2025. április 30-tól a JetBrains jelentős lépést tett az AI-fejlesztés területén azzal, hogy nyílt forráskódúvá tette a Mellumot, a kifejezetten kódkiegészítésre tervezett, célzottan erre a célra kifejlesztett nyelvi modelljét. Ez a speciális 4B paraméteres modell, amely korábban csak a JetBrains kereskedelmi kínálatának részeként volt elérhető, mostantól szabadon hozzáférhető a Hugging Face-en, új lehetőségeket nyitva meg a kutatók, oktatók és fejlesztőcsapatok előtt.
Trendek az LLM fejlesztésben való felhasználásában az Anthropic felmérése alapján
Az Anthropic a mesterséges intelligencia kutatásában és fejlesztésében az élvonalhoz tartozó vállalat, amelyet leginkább Claude nevű nagy nyelvi modelljéről ismerünk. A Claude.ai és a Claude Code termékcsalád az utóbbi években különösen népszerűvé vált a szoftverfejlesztők körében, köszönhetően kiemelkedő kódgenerálási képességeinek és az automatizálásban elért magas szintű teljesítményének