Videójátékok a mesterséges intelligencia tesztelésben

 A videójátékok már évtizedek óta szolgálnak olyan laboratóriumként, ahol különböző AI-algoritmusok képességeit tesztelik. A játékok – legyen szó klasszikus platformjátékokról vagy összetettebb stratégiai környezetekről – lehetőséget nyújtanak arra, hogy a mesterséges intelligencia rendszerek megtanulják a cselekvést, alkalmazkodjanak a változó környezethez, és optimalizálják döntéseiket a jutalmak elérése érdekében.

A Hao AI Lab például nemrég a Super Mario Bros segítségével végzett kísérleteket. Az egyes AI modelleknek Python kódokat kellett generálniuk, amely kódok segítségével lehetett vezérelni a játékot. A kísérletek azt mutatták, hogy a modellek egyre jobban megtanultak összetett manővereket tervezni és különböző játékstratégiákat dolgoztak ki. A tesztelés során a Claude 3.7 bizonyult a legjobbnak amit a Claude 3.5 követett, míg az érvelő modellek mint például az OpenAI o1 kifejezetten rosszul teljesítettek.

A játékok alkalmazása számos előnyt kínál az AI fejlesztésében:

  • Nagy mennyiségű adat és gyors szimuláció: Az absztrakt és viszonylag egyszerű játékmechanikák lehetővé teszik, hogy az AI modellek rengeteg játékmenetet “megszerezzenek” rövid idő alatt. Ez a megerősítéses tanuláshoz nélkülözhetetlen, hiszen a rendszer folyamatos visszajelzéseket kap arról, mely cselekvések vezetnek sikerre.

  • Egyértelmű célok és szabályok: A játékokban egyértelműen definiált célok (pl. egy szint sikeres teljesítése vagy egy ellenség leküzdése) segítik az AI algoritmusokat abban, hogy gyorsan konvergáljanak, és egyszerűsítik a teljesítmény mérését.

  • Laboratóriumi környezet: A játékok absztrakciója révén a kutatók szabályozott környezetben vizsgálhatják a tanulási folyamatokat, ami hozzájárul a gyors kísérletezéshez és a módszerek finomhangolásához.

Annak ellenére, hogy a játékok kiváló tesztterületként szolgálnak, több szakértő is rámutatott arra, hogy a játékok által nyújtott mércék nem feltétlenül tükrözik a valós világ komplexitását:

  • Általánosíthatóság hiánya: Az AI modellek gyakran csak a konkrét játék mechanikáira optimalizálódnak, így egy apró módosítás is jelentős teljesítményromláshoz vezethet. Például a Super Mario Bros. kísérletekben az időzítés kulcsfontosságú, és a "lépésről lépésre érvelő" modellek (OpenAI o1) gyakran nem tudják időben végrehajtani a szükséges cselekvéseket.

  • Elvont és leegyszerűsített környezet: Míg a játékok hatékonyan modellezik az AI döntéshozatalának egy részét, a valós élet számos összetett társas és gazdasági interakciója sokkal több dimenziót és változót tartalmaz, melyeket a játékok nem képesek megfelelően leképezni.

  • A mérőszámok kérdése: A játékokon elért sikereket gyakran túlértékelik. Ahogy egyes szakértők, például Richard Socher és Mike Cook is hangsúlyozták, a játékokra épülő benchmarkok nem feltétlenül adnak átfogó képet arról, hogy egy AI rendszer képes-e valódi, emberi szintű problémamegoldásra.

Az AI benchmark válság

A közelmúltban egyre több kutató kérdőre vonta a meglévő AI benchmarkok relevanciáját úgy általában, nem csak a játékok által felállítottakat. Andrej Karpathy, az OpenAI korábbi kutatója és alapító tagja, az egyik legismertebb kritikus hang, aki a jelenlegi benchmark rendszerekkel kapcsolatban egyenesen értékelési válságot emleget. Egy rövid, X-en közzétett bejegyzésében arról írt, hogy ő sem tudja milyen mérőszámoknak érdemese hinni jelenleg. Más szakértők inkább a játékokkal való tesztelést látják problémásnak, mint például Richard Socher a You.com alapítója és Noam Brown aki kifejezetten olyan mesterséges intelligencia rendszereket fejlesztett amik főként játékokban (például pókerben) teljesítenek jól. Mindketten úgy látják, hogy a játékok túlzottan leegyszerűsített környezetet kínálnak és nem veszik figyelembe a komplex, hosszú távú döntéshozatali folyamatokat, amelyek a valós életben jelentkeznek.

Következtetések

A mesterséges intelligencia gyors fejlődését nehezen tudják követni a különböző benchmarkok, így egyre több kutató bizonytalanodik el, hogy valóban hiteles adatokat kapnak e az egyes tesztektől. A bizalmi válság egyik oka, hogy sok olyan teszt van ami korábbi mesterséges intelligencia mérési gyakorlatokat például játékkal való tesztelést alkalmaz. Ugyanakkor a jó benchmarkokra egyre nagyobb szükség van, hiszen enélkül nehéz meghatározni, hogy jó irányba haladnak e fejlesztések, vagy hogy melyik modell melyik megközelítés a jobb. Nem csoda, hogy a korábban adatcimkézéssel foglalkozó Scale AI, fénysebességgel emelkedett fel, amint egyre inkább a mesterséges intelligencia rendszerek pontosságának ellenőrzésével, döntéseik helyességének validálásával kezdtek el foglalkozni. Az ő történetük és a jelenlegi bizalmi válság is azt mutatja, hogy kialakult a piacon egy rés, amelynek betömése jól fizető üzleti lehetőséget kínál, nem a jövőben hanem már most azonnal. 

Osszd meg ezt a cikket
Történelmi fordulat után az SK Hynix az új piacvezető a memóriaiparban
Három évtizeden keresztül a Samsung neve szinte egyet jelentett a DRAM-piac vezető szerepével. Most azonban fordult a kocka: 2025 első félévében a dél-koreai SK Hynix először előzte meg riválisát a globális memóriaiparban, megszakítva ezzel egy több mint harmincéves sorozatot. A változás nem csupán egy vállalati rangsor átrendeződését jelenti, hanem mélyebb átalakulásra utal az egész félvezetőiparban.
Riasztó ütemben nő a szervezett tudományos csalások száma
A tudomány világa a kíváncsiságra, együttműködésre és közös fejlődésre épül – legalábbis az eszmény szerint. A valóságban azonban mindig is jelen volt benne a verseny, az egyenlőtlenség és a hibázás lehetősége. Régóta tartott attól a tudományos közösség, hogy ezek a nyomások néhány kutatót eltérítenek a tudomány alapvető küldetésétől: a hiteles tudás létrehozásától. Sokáig úgy tűnt, hogy a csalás főként magányos elkövetők műve. Az utóbbi években azonban egy aggasztó fordulat bontakozott ki: egyre több bizonyíték utal arra, hogy a csalás immár nem elszigetelt botlások sorozata, hanem szervezett, ipari méreteket öltő tevékenység, állítja egy nemrég megjelent tanulmány.
Túl a zajon, avagy mit hoz valójában a GPT-5?
A mesterséges intelligencia fejlődése az utóbbi években különösen gyors ütemet vett, olyannyira hogy már szinte fullasztó mennyiségben jönnek ki a hírek a fejlettebbnél fejlettebb modellekről. Így ebben a nagy zajban nem könnyű egy-egy új fejlesztésnek kitűnnie, hiszen egyre nagyobbat kell gurítani, ahhoz hogy a felhasználó ingerküszöbét átvigye. Az OpenAI duplán terhelt emiatt, mivel valahogyan meg kell őriznie az elsőbbségét a többiek előtt akik szorosan jönnek fel mögötte. Ebbe a feszült térbe érkezett meg az OpenAI által most bemutatott GPT-5 modellcsalád, amely a kritikusok által is nagyon várt, hiszen az előzetes beharangozások alapján nem kevesebbet várnak el tőle minthogy minimum új mérföldkő legyen a mesterséges intelligencia modellek tekintetében. A nagy kérdés tehát az, hogy vajon megfelel e ezeknek az elvárásoknak. A cikk során megvizsgáljuk, hogyan illeszkedik a GPT-5 a mesterséges intelligencia modellek a fejlődési ívébe, milyen újdonságokat hoz, és miképpen hat a jelenlegi technológiai ökoszisztémára.
A legnépszerűbb elméletek az AI munkahelyekre gyakorolt hatásáról
A ChatGPT 2022 év végi megjelenése óta szinte hónapról hónapra újabb lehengerlő fejlesztések jelennek meg az AI területén ezért szinte azonnal beindult a fantáziálás arról, hogy miként is fogja ez megváltoztatni az életünket. Ezen belül is az egyik elsődleges kérdés, hogy milyen hatással lesz a munkahelyekre. Mivel a félelmek nem csillapodnak ezzel kapcsolatban, megjegyzem teljesen jogosan, azt gondolom érdemes időnként újból és újból megvizsgálni ezt a kérdést, hiszen az AI fejlődése drámai, ugyanakkor az idő előrehaladtával mégis talán egyre pontosabb képet kaphatunk az ilyen jellegű kérdésekről, hiszen az empirikus tapasztalatok is egyre gyűlnek és egyre több olyan elmélet lát napvilágot, amely igyekszik megválaszolni a kérdéseket. A cikkben igyekeztem összegyűjteni a legrelevánsabb elméleteket, bár a teljesség igénye nélkül hiszen ezek irodalma napról napra bővül. A kérdés természetes az, hogy látható e már a fény az alagút végén, vagy még mindig befelé haladunk egy olyan új világba, amelyről még mindig túl keveset tudunk.
Gondolkodásra tanít az OpenAI Study Mode
Az utóbbi években a mesterséges intelligenciának köszönhetően forradalmi változások indultak be az oktatásban, ahol a hangsúly egyre inkább a passzív információbefogadásról az aktív, mélyebb megértést célzó tanulási folyamatokra helyeződik át.
 Megjelent a Linux Kernel 6.16
Megjelent a Linux kernel 6.16-os verziója. Bár a kiadási folyamat a fejlesztők szerint a lehető legjobb értelemben vett „eseménytelenséggel” zajlott le, a felszín alatt jelentős fejlesztések történtek, amelyek biztonsági, teljesítménybeli és rendszerkezelési szempontból is előrelépést jelentenek. Eközben a soron következő 6.17-es verzió fejlesztése a megszokottnál kissé zavarosabban indult – ennek hátterében olyan emberi tényezők állnak, amelyek ritkán kerülnek reflektorfénybe egy ilyen méretű nyílt forráskódú projekt esetében.